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Agenda

Jeb has explained Ward Identities = Quantum Noether's Theorem.
There was an assumption that D¢ = D¢'. If this assumption fails
we get anomalies. Let's talk about the Weyl anomaly because it is
part of the reason bosonic string theory needs 26 dimensions (and
superstring 10).



Polyakov Action

We start from the polyakov action for strings. Both g and X are
dynamical.
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Spoly = 4o

In trying to quantise this action using the Path Integral, we will
need to apply Faddeev-Popov, which would lead to ghost fields (bc
CFT).

Before quantising, we need to find the gauge symmetries to
integrate out. We have diffeomorphism invariance

o d'(o) (2)
and Weyl invariance

8op — 8ap = V(0)gap(0) (3)



Diffeomorphism Invariance
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Weyl/Conformal Invariance

8ap > 8hp = °(0)8ap(0)
g = Q7 %(0)g"”
V/det g > \/det g’
= \/Qidet g
=Q%\/det g

We will define €2* = Q2 as the scaling factor.



Gauge Transformation of g

Let's define a few things
g means a specific choice of gauge

For any metric g, we define a combined gauge transformation
(diffeo + Weyl)

2w(o‘) 80’C 80’d

¢ %Wgcd(a) (19)

g

Infintesimally, 0 — o + v(o) for a small v << 1 & w(o) << 1
leads to

gC =g+ 2w§a5 + vaVﬂ + VBVQ (20)

we call v(o) and w(o) the generators of the gauge transformation.



Path Integral Quantisation

Let's stick the action in the path integral, remembering to divide
by the gauge volume.

Z=—— / DgDXe o X8l 21
VOldlfFeoxWeyl g (21)

We apply the Faddeev Popov procedure, inserting
1= Arele] [ D¢ 6 (g - &) (22)
into the path integral yields
2(8) = g [ DCPXDelrelels (g - &) ¥l (23)
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Calculating A;F}
We will now calculate
aFilel = [peo(e- &) (25)

We can do it for infinitesimal gauge transformations first
(exponentiating/integrating later to obtain the full). Using the
above,

Azbe] = / DC 6 (2whop + Vavs + Vova)  (26)

Let's expand the delta using fourier. Analogous to
50 (x) = [ d"pexp(2rip - x),

Apple] (27)

= /DvaDB exp <27ri/d20\/§ﬁo‘ﬁ [2wgap + Vavs + nga]>



- ~1
Calculating Agp
Without loss of generality, 5% = %% is a symmetric tensor.

Proof.
Let SY be a symmetric tensor and Tj; be any tensor. One can
decompose Tj; into a symmetric and antisymmetric component

1 1

Tij = 5 (T + Tji) + 5 (Ty = Tji) (28)

If one contracts S¥ with Tj;, the antisymmetric part of Tj; vanishes

SiT; =59 [ (T + Tji) + = (Tu ,,)} (29)
% [SU(Tyj + Tji)] 1 ST Ti)] (30)
S[S7) (T3 + T) (31)

O



Calculating A;F}

We can perform the Dv integration to get 5(60‘5§a5). This implies
that 3%, = 0 (traceless). This simplifies Arp

AZb[g] = / DvDfBexp <4m / d2a\/§5a5vavﬁ> (32)
o det™ V, (33)

Where the last step involved using Gaussian integrals to calculate
inverse determinant. It turns out we can use Berezin integrals
(Gaussian but with Grassmann variables) to calculate the
determinant.

- Sghost

App[g] =det V, = /Dch exp [2 /dszbQBVO‘ A

where we have absorbed some factors into b, c.


https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Berezin_integral

Full Action = Polyakov 4+ Ghost

The full path integral now becomes
Z[g] = /DXDcheXP(—SPo|y [X, 8] — Sghost [b, c,8])  (34)

Ghosts b, ¢ appear in the full action. However, they are scalar
fields that anticommute (in physics: spin-0 fermions), violating the
spin statistics theorem. So they are purely calculational tools and
do not appear as detectable particles. Anyway, we have quantised
string theory! It turns out everything is nicer in complex
coordinates (conformal transformations in 2D satisfy
Cauchy-Riemann relations).



Aside: Calculations in z, Z space

In CFT we will often work in complex coordinates. If one is
familiar with real differential geometry, we can blindly use the
coordinate transformation

z=x+1iy (35)
Z=x—ly (36)
and get the correct results. Strictly speaking real coordinates

cannot have the /, so behind the scenes, the correctness of the
following results is is based on complex manifolds.



Aside: Tensors in z, Z space

The metric and energy-momentum tensor are tensors of rank 2, so
let’s spell out how they transform in the most general case

i Pxd
Top = T,-jg;gyﬂ (37)
Ti1 = (Tzz+ Tuz) + Tor + T3 (38)
0z 0z 0z 0z 0z 0z 0z 0z
T2 = Tzza@ + Tzfg@ + Tzzaafy + TZE&@ (39)
= i(Tzz+ Tzz — Toz — Tzz) (40)
Tor =i(Toz— Tz + Ty — Ty3) (41)
Too = (Toz+ Tzz) = (Tzz + Tzz) (42)



Aside: Symmetric Tensors in z, Z space

If T is symmetric, T,, = T,, = Tjj = Tj;, so the above simplifies

Tio=To =i(T,— Tzz) (43)
Tll = 2TZZ + (Tzz + TZE) (44)
T22 = 2T22 - (Tzz + TZZ) (45)



Aside: Traceless Symmetric Tensors in z, Z space

If T is symmetric and traceless, and g®? = diag(1,1)

Ti1+ T2 =0 (46)
(47)

The LHS expressed in z, z coordinates is 4 T,z, so the traceless
condition becomes

T2z =0 (48)



Aside: Metric in z, Z space

In 2D flat Euclidean space, metric g, = diag(1,1), and so the
inverse metric g, = g?2. This let’s us change an upper index to a
lower index at will. However, it does NOT hold in the z, Z metric
(derivation in next slide), and instead

) wn-3(0 ) @

gij(Xa)’):<é (1)
0 3) eea=2(05) e

gl(x,y) = (



Derivation for z, Z metric
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Derivation for z, Z metric

een () m() @
+ 821 (—;) (;) + 822 <—2ll> (60)

1

1
=2 (811 — g22) + 2 (g12 + g21) (61)

Substituting g11 = g2 =1, g12 = g21 = 0 gives Equation 50.
_ 1/0 1
gab(z,2) = 5 ( 10 ) (62)

en=2(] ) (63)



Ghost Action in z, Z Space

The ghost action is conformally invariant

—i
5ghost = 27T/d20\/§baﬁvac/8
— o
- 27r/d20\/§g’7 basVyc”

so let's use that to choose a conformally flat metric

gocﬁ = e2w 5&6

V/det g = e?

(64)

(65)

(66)
(67)



Ghost Action

Going to complex coordinates

z=x+1ly
Z=x—1ly
dz AN dz = (dx + idy) A (dx — idy)
= —2idx A dy

The ghost action becomes
1
Sghost = yp / dzNdz ezwe_zwg"“(z,f)bagvncﬁ
1
=2 / dz A dZ e*e 2 g b5V, P

1 -
= — / d’z bssV,cZ + zb,,Vsc?
2w

(74)

(75)



Ghost Action

The covariant derivative is just a ordinary derivative in these
coordinates since

1 .
M2, = 87 (085 + Oa g2z —03852) =0 fora=2z2 (76)
2 =~

0
Making the definitions
Db 2Tl (77)
c=c c=c
The ghost action is rewritten more neatly
1 _ _
Sghost = 5- / P2(bic + BOe) (78)
™
with Euler Lagrange equations of motion
Ob=0b=0c=0c=0 (79)

In other words, b = b(z) and ¢ = ¢(z) is holomorphic and
b = b(Z) and ¢ = &(Z) are anti-holomorphic.



bc Ghost CFT

The goal is to get the T(z,Z)T(w, w) Operator Product
Expansion (OPE). Classically, (derivation is quite involved) the
stress tensor for bc theory is

T =2(0c)b+cdb , T =2(d&)b+ cdb (80)
When upgraded to quantum operators, we need to normal order
T=2:(0c)b:+:cOb: , T=2:(0c)b:+:80b: (81)

We can get our TT OPE with a wick contractions among the
0b, b, 0c and c fields.

T(z)T(w) =4:0c(z)b(z) :: dc(w)b(w) : (82)
+2:0c(z)b(z) ( )Ob(w) : (83)
+2:¢(2)0b(z) :: Oc(w)b(w) : (84)
+:¢c(z2)0b(z) :: c(w)ob(w) : (85)



bc Ghost CFT

We need to find out the 4 x 4 = 16 time ordered correlation
functions (among Jc, ¢, db, b). Actually we only need to find 10
out of 16 of them because of exchange (anti)symmetry.

A(z)B(w) = —B(w)A(z) (86)
Moreover, 6 out of 10 of them vanish (TODO proven soon).

dc(z)0c(w) = dc(z)c(w) = c(z)c(w) =0 (87)
0b(z)0b(w) = 0b(z)b(w) = b(z)b(w) =0 (88)

Essentially we only need to calculate 4 OPEs.

dc(z)b(w) , 09c(z)0b(w) (89)
c(z)b(w) , c(z)0b(w) (90)



bc OPE's

Sghost = % / P2(bic + BOe) (91)

Using the fact that path integral of total derivative is 0,

0= / DbDe b(zz) [e—sghost b(w)} (92)
= /DbDC e Sghost [—;ﬁgc(z)b (w)+d(z—w,z—w)

The following is true (operator equations are always implicitly
inside time ordered correlators / inside the path integral)

dc(z)b(w) =276 (z — w,z — W) (93)

The RHS is called the contact term between operators.



Integrating (Oc)b to get cb

Using the identity (can be proven using Stoke's theorem)

9:2 = 276 (2, 7) (94)
z
We get cb OPE
1
c(z)b(w) = T T (95)

Differentiating this in multiple ways gives us all the OPEs we need

c()b(w) = ——— + . (96)
c(2)9b(w) = (Z_1W)2 .. (97)
Oc(z)b(w) =~ _1W)2 t.. (98)

De(2)Ib(W) = ——2— 4 . (99)



Evaluating TT OPE

We perform Wick's theorem in detail for one of the terms

o

(106)

+4:0c(z)b(z)0c(w)b(w) :



Evaluating TT OPE

All 4 terms are

4:9c(z)b(w):  4:b(z)9c(w):

4: 9c(z)b(z) :: Oc(w)b(w) := —(Z_4W)4 + oWy

2: 9c(z2)b(2) :: c¢(w)ob(w) := 7(274‘”)4 + Z:ac(zzﬁf)(w): — &b(z)c(w):
2: ¢(z) 9b(z) :: Oc(w)b(w) := 7(274W)4 — 4:E£i)fv()'§/): 4 20b(z)0c(w):
: ¢(z) 9b(z) :: c(w)db(w) := —(271W)4 - :C(é)f:,()l;v): Ob(z)c(n):
Summing it all up,

—-13 2T(w)  O0T(w)
T(z)T = ...
(2)T(w) (z—w)* (z—w)2+z—w+

+ ...
+ ...
+ ...
+...

(107)



CFT Central Charge

T(2)T(w) = (Z__1V3V)4 + éi%; + iT_(V:V) +... (108)

We know that in bc ghost CFT, the TT expansion takes the above
form. It turns out that in general ALL CFTs, the TT expansion
takes the form

T(2)T(w) = c/2 n 2T(W)2 n OT(w)

oy +... (109)

(z—w) z—w

where c is called the central charge of that CFT. So for the bc
ghost CFT, ¢ = —26.



More Examples of Central Charge

1
S=,— / d?00,X0%X has ¢ = 1 (110)
T
1 n
S = /dQJZ8QX;8°‘X; has c=n (111)
4ra pt
1
5P0|y = 47ra,/d20'\/§gaﬁ8aX“aBXV5MV (112)

has central charge ¢ = (dimensions of space-time the string lives

in).



Central Charges Add Up
If I have 2 (2-dimensional) conformal field theories Sa, Sg, if A, B
has central charge ca, cg respectively, then their combined action
Sc = 5a + S has central charge ca 4+ cg. This can be observed
by examining the (z — w)~* term in the TT OPE.

Tc(2)Tc(w) = (Ta(z) + Te(2))(Ta(w) + Ta(w))  (113)

= Ta(2) Ta(w) + Talz}Fa(w) (114)
+ Ts(2) Te(w) + Talz) (W) (115)

The reason for the vanishing of Ta(z) Tg(w) is because

_ —54—5g
0_/DXADXB e 0 ) (116)
e 5Sa 508
— [ DX DXg e 5A%8 | — O + 117
/ ATTE ( 604(2) 5(w) a(2) (117)

Basically there isn't any contact terms 6(z — w,z — w) so any
OPE between the two theories is 0.



Weyl Anomaly

It turns out that we need the total central charge ¢ of our CFT to
be 0 for it to be physically meaningful, because nonzero ¢ causes
Weyl Anomaly.

(TO) = —1—C2R (118)

Derivation is in the appendix.



Summary

In summary, to quantise the Polyakov action for a bosonic string,
we had to insert the Faddeev-Popov determinant into the path
integral, which ended up being calculated by the bc ghost CFT. bc
CFT alone had central charge of —26, but we need the total
central charge of Polyakov + bc to be 0 due to the Weyl anomaly.
So the Polyakov action needed to have a "critical central charge”
of 26, which corresponded to the coordinates of the string being
26-dimensional.



Appendix A

Let's derive the Weyl anomaly.



Stress Tensor

Conservation of energy and momentum is 9, T*” = 0. Let's
express this in complex coordinates. Previously we derived the
following for traceless symmetric tensors

Tio=To =i(Tz — Tzz) (119)
Tll :%+ (Tzz + TZZ) (120)
Too = 2Fz — (Tzz + T3z) (121)

The cancellation is due to T,z = 0 (traceless condition).



Conservation

Let T be the energy-momentum tensor, then we have 9#T,, = 0.
In complex coordinates,

0=00"T,0=0"Tia + 0* T
=0T+ 0 Tr
= (0+0)i (T — Tz2)
+ i(a - 5) (Tzz + TZE)
= (87_22 —0Tsz5 + 57—22 - 57—2'
— 0T, — 0T +0T,, + 0T33)
=20 (T2 4+ 0Tz — 0T,z — 0T3z)

0:5T22+8T22_8T22_8T2_
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Conservation

—
w
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Putting both together yields conservation of energy-momentum in
complex coordinates

0T, + 0T,z =0 (we will use this) (138)
OTz:+0T,: =0 (139)



Now we can obtain the 8T,:0T,,s OPE from the T, T, OPE,

02 Ty3(2,2)0w Tww(w, W) = 0 To2(2, 2)0% Tww(w, W) (140)

25 [(C/24 4. } (141)

z—w)

We need to evaluate Equation 141
= 1 1= = 1
20— = ~0304 | 92 142

Using ;-1 = 276(z — w,Z — w) (Stoke's),

1 55 5 1 _ Toa & _ -
5 >0 (828.”2_ W) = 3628W8W(5(z w,Z — w) (143)

So our T, T,» OPE is

Toz(2,2) Tuw(w, W) = %”azév-va(z —w,%— W) (144)



Calculating 6 (T, (0))

We know that scale in flat space, scale invariance causes
(T%,) = 0. Let's vary 6 (T%,(0)) with respect to the any general
variation of the metric dg,3 away from flat space

5 (T( —5/D¢e ST (0) (145)
. . 47 §Smatter
| Using Tg, = _ﬁ 55

— ;/D¢e5 <T%(o)/d20’\/§5gﬁ”Tﬁw (0')>

If we restrict the variation of the metric to a conformal
transformation, the metric varies as 6g,3 = 2wd,g, and the inverse
metric 6g®® = —2wd*?. This gives

5 (T (o)) = —/D¢e < )/d%’w (o!) TP (a’)>



Calculating (T%,(0))

Substituting in the OPE with the correct factors
T%(0)TP5 (o) = 16 T,5(2,2) Twa(w, W) (146)
80,050(z —w,z — W) = —0%5 (0 — o) (147)
yields the following

5(T%) = 20w = (T%) = — R (148)

Even though we are working infinitesimally, the RHS remains true
for general 2D surfaces.



